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Abstract

In this paper we propose a novel method for depth es-
timation based on a single recording of a focused plenop-
tic camera. The presented algorithm is based on multiple
stereo-observations within the multi-view micro images of
the focused plenoptic camera. Here, pixel correspondences
are found based on local intensity error minimization. Since
our algorithm works directly on the micro images, no sub-
aperture or epipolar plane images have to be synthesized.
Due to the fact that we perform stereo matching based on lo-
cal criteria we only estimate depth for pixels with sufficient
gradient. Thus, we reduce the complexity of the problem,
while neglecting uncertain stereo correspondences. Our
algorithm incorporates multiple stereo-observations of the
same point in a probabilistic depth map. We will show, that
this (inverse) depth map can be modeled as a map of Gaus-
sian distributed random variables. Thus, each depth pixel
consists of an estimated depth and a corresponding vari-
ance, which gives a measure for the uncertainty of the esti-
mation. This uncertainty information can be used in subse-
quent filtering methods.

1. Introduction
Plenoptic cameras capture the light-field of a scene as

a 4D function [1, 6]. Thus, a plenoptic camera gathers
much more information about the recorded scene than a tra-
ditional monocular camera.

Due to the fact, that an image point is not only repre-
sented by a single, but by multiple sensor pixels (or light
rays), for instance, the image distance and thus also the ob-
ject distance of a point can be estimated from one single
shot of a plenoptic camera. Hence, a plenoptic camera of-
fers a passive depth sensor alternatively to a binocular stereo
camera for example.

One big advantage of a plenoptic camera compared to
a binocular stereo camera system are the small dimensions
in which it can be realized. A plenoptic camera basically
has the same dimensions as a traditional monocular camera.

Figure 1. Virtual depth map calculated from a single shot of a
focused plenoptic camera. Left: RGB-image calculated by the
Raytrix software. Right: Color-coded virtual depth map calcu-
lated based on our probabilistic approach.

The only trade-off is, that for the 4D light-field information
is payed by less image resolution [5].

In this paper we present a novel approach for estimating
depth from a single recording of a focused plenoptic camera
[11, 14].

1.1. Related Work

For the last years various algorithms for depth estimation
based on the recordings of plenoptic cameras or other light-
field representations were published. First methods were
published even more than 20 years ago [1].

Since light-field based depth estimation represents a
multi-dimensional optimization problem, always a trade-off
between low complexity and high accuracy or consistency
has to be chosen. In [19, 18] for instance a globally consis-
tent depth labeling is presented which is performed on the
epipolar plane images (EPIs) of the 4D light-field and re-
sults in a dense depth map. In [8] the phase-shift theorem
of the Fourier transform is used to calculate a dense dis-
parity map with sub-pixel accuracy, while in [7] principal
component analysis is used to find the optimum depth map.
Other methods make use of geometric structures, like 3D
line segments [20], to improve the estimate and to reduce
the complexity. In [17] the use of a so called scale-depth
space is presented, which provides a coarse depth map for
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uniform regions and a fine one for textured regions. Other
methods reduce complexity by the use of local instead of
global constrains and thus result in a sparse depth map. This
sparse map supplies depth only for textured regions [2]. The
methods presented in [16] and [9] additionally make used of
the focus cues which are supplied by a plenoptic camera.

In our approach we are mostly interested in low com-
plexity and real-time applicability. Therefor we were in-
spired by a monocular camera based multi-view stereo ap-
proach presented in [3].

1.2. Outline of Our Work

The contribution of this work is a new, focused plenop-
tic camera based depth estimation algorithm which estab-
lishes a semi-dense depth map. Therefor no sub-aperture
images or EPIs are calculated beforehand. Our approach in-
corporates multiple stereo-observations of a point in a prob-
abilistic depth estimate, similar to [3] where this idea has
been used to gain depth in a monocular visual odometry
approach. Beside the estimated depth, a measure of uncer-
tainty is supplied for each pixel. Based on this additional
information selective filters and outlier removals can be ap-
plied. Using the measure of uncertainty, after establishing
the depth map it can be easily chosen between a very dense
but less reliable or a more reliable but sparser depth map.

2. The Focused Plenoptic Camera
This section describes the concept of a focused plenop-

tic camera as it was presented for the first time in [11]. This
concept differs slightly from the one of a traditional plenop-
tic camera [13, 12].

A focused plenoptic camera can be realized in two differ-
ent configurations which are often referred to as Keplerian
configuration and Galilean configuration.

In the Keplerian configuration [10, 11] a micro lens array
(MLA) and the sensor are placed behind the focused image
which is created by the main lens. Here, the focal length of
the micro lenses is chosen such that multiple focused sub-
images (micro images) of the main lens image occur on the
image sensor.

In the Galilean configuration [10, 11] MLA and sensor
are placed in front of the focused image which would be
created by the main lens behind the sensor (Fig. 2). Subse-
quently we will call this image behind the sensor the virtual
image. Similarly to the Keplerian configuration, the focal
length of the micro lenses is chosen such that multiple sub-
images of the virtual main lens image occur focused on the
image sensor.

A Raytrix camera [14] is a focused plenoptic camera
based on the Galilean configuration. While a plenoptic
camera has already a larger depth of field (DOF) than a
monocular camera at the same main lens aperture [4, 14],
in a Raytrix camera the DOF is further increased by using

B bL0

b

fL

bL

DM

DM

DM

DL

main lenssensor
MLA

Figure 2. Optical path inside a focused plenoptic camera based on
the Galilean configuration. The MLA and the image sensor lay in
front of the virtual image created by the main lens. A virtual image
point in distance b behind the MLA results in multiple focused
micro images on the sensor.

an interlaced MLA in a hexagonal arrangement (see Fig-
ure 3). This MLA consists of three different micro lens
types, where each type has a different focal length and thus
focuses a different virtual image distance on the sensor. The
DOFs of the three micro lens types are chosen such that they
are just adjacent to each other. Thus, the effective DOF of
the camera is increased by a factor of three compared to an
MLA with only one type of micro lenses.

In the following we will only discuss a focused plenoptic
camera which relies on the Galilean configuration. Never-
theless, for the Keplerian configuration similar relations can
be derived.

If we consider the main lens to be an ideal thin lens,
the relationship between the object distance aL of an object
point and the image distance bL of the corresponding image
point is defined by the thin lens equation, given in eq. (1).
For a thick lens only slight changes have to be made in this
equation.

1

fL
=

1

aL
+

1

bL
(1)

Here fL is the main lens focal length. Thus, if the image dis-
tance bL of an image point is known, the object distance aL
of the corresponding object point can be calculated based
on the lens equation.

As one can see from Figure 2, a virtual image point in
distance bL behind the main lens is projected to multiple
micro images on the sensor. If we now consider the micro
images as ideal central perspective images, the distance b
between MLA and a virtual image point can be calculated
by triangulation, as derived in [21]. Thereby it follows that



Figure 3. Section of the micro lens images (raw image) of a Raytrix
camera. It shows on the left a part of the handle of the white cup
and on the right a part of the headphone frame (see Fig. 1).

the distance b is calculated as given in eq. (2).

b =
d ·B
px

(2)

Here, px is the disparity between the corresponding points
in the micro images, d the baseline distance between the mi-
cro lenses used for triangulation andB the distance between
MLA and image sensor. If we consider two adjacent micro
images, the stereo baseline d is just the diameter of a micro
lens DM , as defined in Figure 2. For further apart micro
images the baseline distance is a multiple of that diameter
d = k ·DM (k ≥ 1). Since d defines the euclidean distance
between any two micro image centers, k is not mandatory
an integer. This is the case for any regular tessellation.

The disparity px and the baseline distance d are both de-
fined in pixels and can be measured from the recorded raw
image, while the distance B between MLA and sensor is
a metric dimension which can not be measured precisely.
Thus, the distance b is estimated relative to the distance B.
This relative distance, which is free of any unit is called
virtual depth [14] and will be denoted by v in the following.

v =
b

B
=

d

px
(3)

From Figure 2 one can see that virtual image points
which have a large virtual depth occur in more micro im-
ages than points with a small virtual depth. Thus, one can
make use of the larger baseline distance d between micro
lenses which are further apart and thus improve the virtual
depth estimate.

3. Virtual Depth Map Estimation
The estimation of the virtual depth v can be considered

as a multi-view stereo problem since each virtual image
point occurs in multiple micro images. Besides, the prob-
lem simplifies since all micro lenses have the same orienta-
tion by construction and thus, the micro images are already
rectified. Due to the small dimensions of the micro images
with respect to the pixel pitch (about 23 pixel in diameter),
distortions of the micro images are negligible. Nevertheless,
if there occurred significant distortion in the micro images
a prior MLA calibration and rectification would have to be
performed.

One approach to solve such a multi-view stereo problem
would be to find correspondences between multiple micro
images and then solve for the virtual depth. However, there-
for pixel correspondences with sub-pixel accuracy have to
be found across multiple micro images. Due to the very
small micro images, feature extraction and matching seems
to be quite difficult. Thus, we follow a different approach
which is based on multiple depth observation received from
different micro image pairs. Instead of feature matching
we determine pixel correspondences by intensity error mini-
mization along the epipolar line. For each depth observation
an uncertainty measure is defined and thus, a probabilistic
virtual depth map is established similar to the depth map
in [3] where it is used to gain depth in a monocular visual
odometry approach.

3.1. Probabilistic Virtual Depth

We define the inverse virtual depth z = v−1, which is
obtained from eq. (3). The inverse virtual depth z is propor-
tional to the estimated disparity px, as given in eq. (4).

z =
1

v
=
px
d

(4)

Since we determine pixel correspondences by matching
pixel intensities, we consider the sensor noise to be the main
error source which effects the disparity estimation and thus
the inverse virtual depth z. Thereby, we neglect for instance
misalignment of the MLA with respect to the image sensor
or offsets on the micro lens centers. Furthermore, as one
can see from eq. (4), the estimate of z relies only on the
baseline distance d and the disparity px which result both
as differences of absolute 2D positions in pixel coordinates.
Thus, at least within a local region, the estimate of z is in-
variant of alignment errors on the MLA.

The sensor noise is usually modeled as additive white
Gaussian noise (AWGN). Since pixel correspondences are
estimated based on intensity values, the disparity px and
thus the estimated inverse virtual depth z can also be con-
sidered as Gaussian distributed. This projection will be de-
rived mathematically in Section 3.3.2.

In the following we will denote the inverse virtual depth
hypothesis of a pixel by the random variable Z ∼ N (z, σ2

z)
defined by the distribution function fZ(x) as given in
eq. (5).

fZ(x) =
1√
2πσz

e
− (x−z)2

2σ2z (5)

Since the random variable Z is Gaussian distributed, it is
completely defined by its mean z and its variance σ2

z .

3.2. Graph of Baselines

For stereo matching we define a graph of baselines.
This graph defines which micro images are matched to



Figure 4. Five shortest baseline distances in a hexagonal micro
lens grid. For a micro lens stereo matching is only performed
with neighbors for which the baseline angle φ is in the range
−90◦ ≤ φ < 90◦.

each other. Each baseline in the graph is defined by its
length d as well as its 2D orientation on the MLA plane
ep = (epx, epy)

T . Since we consider the micro images to
be rectified, the orientation vector of the baseline is equiva-
lent to that of the epipolar line. Thus, ep defines the epipo-
lar line for each pixel of the micro lens pair. In the fol-
lowing we will always consider ep to be normed to unity
(‖ep‖ = 1 pixel).

In the graph the baselines are sorted in ascending order
with respect to their length. This is also the order in which
stereo matching will be performed. Matching is performed
in that order since for short baselines it is more likely to
find a unique match, while a long baseline improves the ac-
curacy of the estimation but is also more likely to result
in ambiguous matches. Thus, the matching result for short
baselines can be used as prior knowledge for micro image
pairs which are connected by a longer baseline.

Stereo matching is performed for each pixel on the raw
sensor image separately. Here, we want to assure that corre-
sponding pixels in different micro images are only matched
once to each other. Thus, it is sufficient to perform match-
ing only with respect to micro images right to the refer-
ence micro image. All micro images to the left will es-
tablish correspondence when they are considered as refer-
ence. Thus only baselines or epipolar lines with an angle
−90◦ ≤ φ < 90◦ are considered.

Figure 4 shows the five shortest baseline distances in a
hexagonal MLA grid. Here the red dashed circles represent
the respective baseline distance around the micro lens of
interest. The solid blue lines show one example baseline for
each distance, while only baselines right of the dotted line
are used for stereo matching. The epipolar line ep is defined
such that it points away from the centered micro lens.

3.3. Virtual Depth Observation

The inverse virtual depth estimation is performed for
each pixel xR = (xR, yR)

T in the raw (sensor) image
I(xR).

As already mentioned, the depth observation is per-
formed starting from the shortest baseline up to the largest
possible baseline. Based on each new observation, the in-
verse depth hypothesis of a raw image pixel Z(xR) is up-
dated and thus becomes more reliable.

To reduce computational effort, for each baseline it is
checked first, if the pixel under consideration xR has suffi-
cient contrast along the epipolar line, as defined in eq. (6).

|gI(xR)
Tep| ≥ TH (6)

Here gI(xR) represents the intensity gradient vector at the
coordinate xR (eq. (7)) and TH some predefined threshold.

gI(xR) = gI(xR, yR) =
(

∂I(xR,yR)
∂xR

∂I(xR,yR)
∂yR

)T
(7)

3.3.1 Stereo Matching

To find the pixel in a certain micro image which corresponds
to our pixel of interest xR we search for the minimum inten-
sity error along the epipolar line in the corresponding micro
image.

If there was no inverse virtual depth observation obtained
yet for the pixel of interest xR, an exhaustive search along
the epipolar line has to be performed. For that case the
search range is limited on one end by the micro lens border
and on the other end by the coordinates of xR with respect
to the micro lens center. A pixel on the micro lens border
results in the maximum observable disparity px and thus in
the minimum observable virtual depth v, while a pixel at the
same coordinates as the pixel of interest in the correspond-
ing micro image equals a disparity px = 0 and thus a virtual
depth v =∞.

If there exists already an inverse virtual depth hy-
pothesis Z(xR), the search range can be limited to
z(xR)± nσz(xR), where n is usually chosen to be n = 2.

Z(xR) ∼ N (z(xR), σ
2
z(xR)) (8)

In the following we define the search range along the
epipolar line as given in eq. (9)

xs
R(px) = xs

R0 + px · ep (9)

Here xs
R0 is defined as the coordinate of a point on the

epipolar line at the disparity px = 0, as given in eq. (10).

xs
R0 = xR + d · ep (10)

Within the search range we calculate the sum of the
squared intensity error eISS over a 1-dimensional pixel
patch (1×N ) along the epipolar line, as defined in eq. (11).

eISS(px) =
N−1

2∑
k=−N−1

2

[I(xR + kep)− I(xs
R(px) + kep)]

2 (11)



The best match is the disparity px which minimizes
eISS(px). For the experiments presented in Section 4 we
set N = 5. In the following we refer to the estimated dis-
parity by p̂x, which defines the corresponding pixel coordi-
nate xs

R(p̂x).

3.3.2 Observation Uncertainty

As described before, the sensor noise nI is the main error
source which effects the estimated disparity p̂x and thus the
inverse virtual depth observation.

While the variance of the sensor noise σ2
N can be consid-

ered to be the same for each pixel xR, it effects the disparity
estimation differently. This effect can be derived mathe-
matically. Therefore we formulate the stereo matching by
the minimization problem given in eq. (12), where the esti-
mated disparity p̂x is the one which minimizes the squared
intensity error eI(px)2. For simplification of the mathemati-
cal derivation, eI(px)2 is defined without the averaging over
several pixels.

p̂x = min
px

(
eI(px)

2
)

= min
px

(
(I(xR)− I(xs

R(px)))
2
)

(12)

Calculating the first derivative with respect to px, as given in
eq. (13) and setting it to zero results in the condition given
in eq. (14) as long as gI(px) 6= 0 holds.

∂eI(px)
2

∂px
=
∂ (I(xR)− I(xs

R(px)))
2

∂px

= 2 (I(xR)− I(xs
R(px))) · (−gI(px)) (13)

I(xR)− I(xs
R(px))

!
= 0 (14)

Here, the intensity gradient along the epipolar line gI(px)
is defined as follows:

gI(px) = gI (x
s
R(px)) =

∂I(xs
R0 + pxep)

∂px
(15)

Based on the chain rule for derivatives it can be derived
that gI(px) is given as follows, where gI(xR) is defined
as given in eq. (7).

gI(px) = gI(x
s
R(px))

Tep (16)

After approximating eq. (14) by its first order Taylor-series
it can be solved for px as given in eq. (17).

p̂x =
I(xR)− I(xs

R(px0))

gI (xs
R(px0))

+ px0 (17)

gI(px0)px
I(px)

px

gI(px0)px
I(px)

px

Figure 5. Camera sensor noise nI can be considered as additive
white Gaussian noise (AWGN) which disturbed the intensity val-
ues I(xR) and thus effects the disparity observation as AWGN.
As shown on the left, for a low image gradient along the epipolar
line, the influence of the sensor noise nI is stronger than for a high
image gradient.

If we now consider I(xR) in eq. (17) as an Gaussian dis-
tributed random variable, the variance σ2

px of the disparity
px can be derived as given in eq. (18).

σ2
px =

Var{I(xR)}+ Var{I(xs
R(px0))}

gI(xs
R(px0))

2

=
2σ2

N

gI(xs
R(px0))

2
(18)

Similarly, Figure 5 illustrates how the gradient gI effects the
estimation of px. Here the blue line represents the tangent at
the disparity px0 at which the intensity values are projected
onto the disparities.

The variance σ2
px considers only the stochastic noise

which is produced by the sensor and assumes that aside
from that noise the corresponding image regions around xR

and xs
R(p̂x) are identical. In reality this is not the case and

especially not for a Raytrix camera, where neighboring mi-
cro lenses have different focal lengths and thus do not focus
on the same virtual depth (see Fig. 3). Thus, beside the vari-
ance σ2

px we define a second error source which we call the
focus uncertainty. In this focus uncertainty we take into ac-
count the obvious thought that a small intensity error eISS

gives a more reliable disparity estimate than a large inten-
sity error. Thus, we define the focus uncertainty as follows:

σ2
f = α · eISS(px)

gI(xR(px))2
(19)

Here α is a constant scaling factor which defines the weight
of σ2

f with respect to σ2
px . We chose α such that for micro

images with a different focus plane σ2
f equals on average

σ2
px .

The observation uncertainty σ2
z results as the sum of σ2

px
and σ2

f since we consider both error sources as uncorrelated.
From eq. (4) one can see that z is the disparity px scaled by
d−1. Thus, for σ2

z the scaling factor d−2 has to be intro-
duced, as given in eq. (20).

σ2
z = d−2 ·

(
σ2
px + σ2

f

)
(20)



3.4. Updating Virtual Depth Hypothesis

As described in Section 3.2 the observations for the in-
verse virtual depth z are performed starting from the short-
est baseline up to the largest possible baseline, for which a
virtual image point is still seen in both micro images. In
that way for each pixel an exhaustive stereo matching over
all possible micro images is performed leading to multi-
view stereo. In our algorithm we incorporate new inverse
virtual depth observations similar to the update step in a
Kalman filter. Thus, the new inverse virtual depth dis-
tribution N (z, σ2

z) results form the previous distribution
N (zp, σ

2
p) and the new inverse depth observationN (zo, σ

2
o)

as given in eq. (21).

N (z, σ2
z) = N

(
σ2
p · zo + σ2

o · zp
σ2
p + σ2

o

,
σ2
p · σ2

o

σ2
p + σ2

o

)
(21)

The baseline distance d is more or less proportional to
the virtual depth v = z−1. From eq. (20) one can see that
the inverse virtual depth variance σ2

z is inverse proportional
to d2. Besides, the number of observations increases with
the virtual depth v since one point occurs in more micro
images. For the case that all depth observations are sta-
tistically independent and have the same variance σ2

i = σ2
o

(i ∈ 1, 2, . . . , N ), the variance of the incorporated depth es-
timate σ2

z is just N times smaller then the observation vari-
ance σ2

0 , as defined in eq. (22).

1

σ2
z

=

N∑
i=1

1

σ2
i

=
N

σ2
o

(22)

Thus, one can assume that the inverse virtual depth variance
σ2
z improves approximately proportional to v3.

3.5. Calculating a Virtual Depth Map

Based on the observed inverse virtual depth z, a pixel
in the raw image, defined by the coordinates xR, can be
projected in a 3D space which we will call the virtual im-
age space, denoted by the coordinates xV = (xV , yV , v =
z−1)T . Based on the main lens projection (eq. (1)) the
virtual image space can be projected into a metric object
space. Nevertheless, therefore a prior metric calibration as
presented in [21] for instance is needed. The transform of
raw image coordinated xR to virtual image coordinates xV

is defined as given in eq. (23).
z · xV
z · yV
z
1

 =


1 0 cx −cx
0 1 cy −cy
0 0 1 0
0 0 0 1

 ·

xR
yR
z
1

 (23)

Here c = (cx, cy)
T is the center of the micro lens under

which the pixel xR lies. From eq. (23) the coordinates xV

Figure 6. Test setup. Depth estimation algorithms are evaluated
based on a planar chessboard target for different object distances.
Only depth values in the red marked region of interest are evalu-
ated.

and yV result as follows.

xV = (xR − cx)z−1 + cx (24)

yV = (yR − cy)z−1 + cy (25)

For the following experiments we will define the vir-
tual image xV as a 2D depth map v(xV , yV ) = v(xV ) or
z(xV , yV ) = z(xV ) respectively.

4. Experiments & Results
In this section we want to present the evaluation of our

proposed method. Therefore we performed experiments,
where we compare our multi-view stereo (MVS) algorithm
to the classical virtual depth estimation implemented in the
Raytrix software [14]. Additionally, we compared both
methods based on realistic data sets which are supplied by
Raytrix [15].

4.1. Experiments

All experiments were performed based on a Raytrix R5
camera with a main lens focal length of fL = 35mm.
To evaluate the depth estimation methods a planar target
is recorded for different object distances, as shown in Fig-
ure 6. Here, both images show the totally focused RGB-
image of the recorded target for two different target dis-
tances. Since the target is placed frontal to the plenoptic
camera for a perfect estimation one would expect a constant
virtual depth across the complete plane.

For each of the recorded frames a virtual depth map was
calculated, once using our probabilistic method and once
using the classical algorithm [14]. Since we only want to
evaluate the depth estimation algorithm itself without any
post processing, all post processing steps like filtering or
hole filling are disabled in the Raytrix software.

As one will see form the results in Section 4.2, our
method results in a much denser depth map than [14]. Thus,
to receive an as dense as possible depth map, both, the res-
olution as well as the sensitivity for the classical approach
were set to high. Thereby, the algorithm uses a step size
of 0.3 pixel and a correlation patch diameter between three
and four pixel.

Since our method offers additionally to the virtual depth
v = z−1 an inverse virtual depth variance σ2

z , two different



(a) (b) (c)
Figure 7. Color coded virtual depth maps calculated from the raw
image of a Raytrix R5 camera. (a) Depth map calculated based
on our MVS algorithm. All valid depth pixels are considered.
(b) Depth map calculated based on our MVS algorithm. Only
depth pixels with a variance σ2

z < T (z) are considered. (c) Depth
map calculated based on the classical algorithm [14]. High sensi-
tivity as well as resolution was set.

depth maps were calculated based on our MVS algorithm.
While the first depth map considers all valid depth pixel
disregarding their variance, the second depth map considers
only these depth pixel which have a variance σ2

z underneath
a certain threshold T (z), as defined in eq. (26).

σ2
z(xV ) < T (z) = β · z(xV )

3 (26)

The threshold T (z) is chosen as a third order function of
z due to the thoughts made in Section 3.4. In eq. (26) β
is just a scaling factor, which defines the point density of
the resulting depth map. In our experiments a scaling factor
β = 0.1 was chosen. This resulted in a more or less equal
point density for our approach compared to [14].

It is important to emphasize, that here no low-pass filter-
ing is performed and just uncertain estimates are removed.

4.2. Results

Figure 7 exemplary shows the depth maps calculated for
an object distance aL ≈ 1.2m. These depth maps cor-
respond to the recoded scene which is shown on the left
side in Figure 6. In Figure 7, (a) and (b) show the results
of our MVS algorithm. Here, (a) includes all valid depth
pixels, while (b) includes only those which have a variance
σ2
z(xV ) < T (z), as defined in eq. (26). The depth map (c)

in Figure 7 shows the results of the classical algorithm [14].
From Figure 7 one can see already, that the outliers in our

method are drastically reduced by introducing the threshold
T (z), while most of the details are kept. Besides, one can
see that the depth map of [14] is much sparser than the raw
depth map resulting from our approach. In addition it seems
that the outliers of the method [14], especially on the chess-
board plane are not statistically independent, but occur in
clusters.

Beside the qualitative evaluation based on the depth
maps some statistics were calculated for different object
distances aL. In this Section we present the results for
aL1 ≈ 1.2m, aL2 ≈ 3.1m, and aL3 ≈ 5.1m. For
all three object distances Table 1 shows the depth pixel den-
sity of the corresponding algorithm. The depth pixel density

depth pixel density
Method aL1 aL2 aL3

MVS (all depths) 0.3075 0.5041 0.5638
MVS (σ2

z(xV ) < T (z)) 0.1788 0.3900 0.4760
Classical alg. [14] 0.1305 0.3109 0.4216

Table 1. Depth pixel density across the chessboard target for dif-
ferent object distances aL.

standard deviation
Method aL1 aL2 aL3

MVS (all depths) 0.0366 0.0505 0.0386
MVS (σ2

z(xV ) < T (z)) 0.0104 0.0167 0.0170
Classical alg. [14] 0.0889 0.0632 0.0651

Table 2. Empirical standard deviation of the inverse virtual depth z
for different object distances aL.

is defined as the ratio between the number of valid depth
pixels and the total number of pixels within the region of
interest. Here one can see, that our method has a higher
depth pixel density than the classical approach for all object
distances.

For all three object distances we calculated the empir-
ical standard deviation of the inverse virtual depth values
z = v−1 across the chessboard target. The results are shown
in Table 2. As one can see, the standard deviation of our
MVS approach is better than that of the classical algorithm
for all three object distances, even without removing out-
liers. After removing outliers, we achieve a standard devi-
ation which is at least three times better than that of [14],
while still having a higher depth pixel density (see Tab. 1).
Also quite interesting to see is, that only sightly reducing
the depth pixel density, by introducing the threshold T (z),
highly reduces the empirical standard deviation of the in-
verse virtual depth.

Figure 8 and 9 shows the virtual depth histograms across
the chessboard target for the object distances aL1 ≈ 1.2m
and aL3 ≈ 5.1m. Especially from Figure 8 one can see
that the outliers of the classical algorithm have some sys-
tematic characteristic instead of been uniformly distributed.
Besides, the histograms again show quite well how the out-
liers in our approach are removed by introducing the thresh-
old T (z).

4.3. Results on Realistic Data Sets

For a qualitative evaluation the depth maps for two sam-
ple scenes (Fig. 10) were calculated. Here the settings for
the classical algorithm [14] were set similar to the experi-
ments in Section 4.1.

We ran both algorithms on a NVIDIA GeForce GTX TI-
TAN and measured the run-times given in Table 3. Scene 1
has a raw image resolution of 4016 pixel× 2688 pixel and
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Figure 8. Virtual depth histograms for object distance
aL1 ≈ 1.2m. (a) Histogram of our MVS algorithm including all
valid depth pixels. (b) Histogram of our MVS algorithm including
all depth pixels with σ2

z < T (z). (c) Histogram of the classical
algorithm [14].
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Figure 9. Virtual depth histograms for object distance
aL1 ≈ 5.1m. (a) Histogram of our MVS algorithm including all
valid depth pixels. (b) Histogram of our MVS algorithm including
all depth pixels with σ2

z < T (z). (c) Histogram of the classical
algorithm [14].

scene 2 of 4008 pixel× 2664 pixel. We want to mention
that the classical algorithm can be sped up by changing the
settings. Nevertheless, this likely results in less quality of
the depth map. The MVS run-times are highly dependent
on the scene since for high virtual depths more observations
are received than for low ones.

Without any ground truth it is difficult to evaluated the
absolute accuracy. However, one can see that at regions
of depth discontinuities (e.g. at the edges of the screws in
scene 2) the MVS performs very well.

5. Summary and Our Contribution

In this paper we proposed a virtual depth estimation al-
gorithm for a focused plenoptic camera. We introduce a
graph of baselines which defines the multiple micro lens
pairs in the MLA. Based on this graph multiple stereo-
observations are obtained, starting from a short up to a long
baseline. These observations are incorporated in a proba-
bilistic depth map.

We expressed mathematically how the camera noise ef-
fects the disparity estimation. Thus, the estimated inverse
virtual depths can be defined as Gaussian distributed ran-
dom variables. The multiple inverse virtual depth obser-
vations of the same pixel are considered to be statistically

(a) (d)

(b) (e)

(c) (f)
Figure 10. Depth estimation applied to sample scenes (data sets
available at [15]). (a) and (d) show the totally focused images. (b)
and (e) show the results of our MVS algorithm. (c) and (f) show
the results of the classical algorithm [14].

Method Scene 1 (pilot) Scene 2 (watch)
MVS 58ms 93ms

Classical alg. [14] 513ms 404ms

Table 3. Run-times measured for depth estimation

independent and are incorporated one after another into the
probabilistic depth map.

Based on the probabilistic depth map it is possible to
remove outliers without any low-pass filtering by setting a
threshold for the inverse virtual depth variance. Thus, dis-
continuities in the depth map are preserved.

The performed experiments showed that our algorithm
outperforms the classical algorithm in accuracy and run-
time.
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