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Abstract—This article presents a method to calibrate the
optical imaging process of a focused plenoptic camera. At first,
the concept of a focused plenoptic camera is presented, where
the synthesis of images from the recorded light-field is described.
It is shown that the synthesized image imitates the image of
a real camera and thus traditional methods can be used for
calibration. In this article a method approved for traditional
cameras is applied to the recordings of a light-field camera.
Based on experiments, the quality of the calibration method is
evaluated. Amongst others it is shown that a pinhole camera with
a conventional lens distortion model also holds true for a focused
plenoptic camera.

I. INTRODUCTION

A plenoptic camera or light-field camera is an optical
camera which records, different from a traditional camera, not
only the intensity of incident light on the image sensor but an
image of the light-field of a scene.

During the last years plenoptic cameras gained more and
more attention in the research fields of computer vision and
photogrammetry. The main reason for revisiting this concept,
which was already investigated more than hundred years ago
[1], [2], is today’s availability of fast graphic processor units
(GPUs). Today’s GPUs are capable to evaluate recorded light-
field sequences with high frame rates (≥ 30 fps). In [3] and
[4] the first developed prototypes of plenoptic cameras are
described.

Today, there exist different concepts of light-field cameras.
While [4], [5] and [6] use a micro lens array (MLA) in
front of the image sensor, the concept described in [7] relies
on a 4 × 4 micro camera array. There are basically two
different MLA-based concepts of a plenoptic camera. The
”unfocsued” plenoptic camera as described in [4] and the
focused plenoptic camera (or plenoptic camera 2.0) [8], [6].
Compared to the ”unfocused” plenoptic camera the focused
plenoptic camera has a higher spatial resolution. This results
in a higher resolution of the synthesized image. In contrast, the
”unfocused” plenoptic camera has a higher angular resolution.

For photogrammetric applications it is important to accu-
rately know the relationship between a point in object space
and the corresponding image point. To define this relationship,
the intrinsic parameters of the camera have to be known
precisely and have to be determined by a camera calibration

process. In the last years some calibration methods for plenop-
tic cameras were proposed already. While [9] describes the cal-
ibration of a Lytro camera [4], [10] and [11] present calibration
methods for a Raytrix camera [6]. Paper [11] mainly focuses
on the calibration of the supplied depth information up to a
range of about 10m and investigates the depth resolution in
this range, whereas [10] presents depth and image calibration
of a Raytrix camera in a very short range. Therefore a more
complex calibration setup is required.

In this article we apply a very simple calibration method
[12], which is commonly used for traditional cameras, to the
recordings of a Raytrix camera. Thus, we want to investigate
the suitability of such traditional methods for plenoptic cam-
eras.

This article is organized as follows. Section II briefly
presents the concept of a focused plenoptic camera. In Sec-
tion III we describe the calibration method [12] which was
used in the experiment presented in Section IV. Section V
illustrates the results of the experiments and Section VI draws
conclusion.

II. CONCEPT OF A FOCUSED PLENOPTIC CAMERA

A plenoptic camera records the light-field of a scene as
a four dimensional (4D) function, by one single shot. Thus, a
plenoptic camera gathers much more information about a scene
than a traditional camera. In [13] Gortler et al. show that in free
space it is sufficient to define the light-field as a 4D function
since here the intensity along a ray does not change. Thus, the
constant intensity along a ray can be defined by two position
and two angle coordinates. Based on the 4D representation,
the light-field of a convex object emitted in one direction can
be described.

Since this article discusses calibration methods applied to
a Raytrix camera, only the concept of this camera will be pre-
sented here. From a schematic point of view the only difference
between a traditional camera and a focused plenoptic camera
is the MLA in front of the image sensor. Thus, we will derive
the concept of the focused plenoptic camera from a common
thin lens projection.

Figure 1 shows the projection of an object which is in the
distance aL in front of the main lens to a focused image in
the distance bL behind the main lens. Here, the relationship
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Fig. 1. Thin lens projection. A thin lens projects an object in distance aL
in front of the lens to a focused image in distance bL behind the lens. The
relationship between aL and bL dependents on the focal length fL of the
lens and is defined by the thin lens equation.
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Fig. 2. Image projection inside a focused plenoptic camera. The virtual image,
which would be formed in distance bL behind the main lens, is focused on
the image sensor by several micro lenses, which are placed in the distance
bL0 behind the main lens. Out of the micro images of a point the distance b
between MLA and the corresponding virtual main lens image can be estimated.

between the object distance aL and the image distance bL is
defined by the thin lens equation given in eq. (1). Here fL
represents the focal length of the thin lens.
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For a traditional camera the sensor would be placed in the
image distance bL behind the sensor and thus all object within
the depth of field (DOF) around the object distance aL occur
focused in the recorded image.

In a Raytrix camera the sensor is placed closer than the
image distance bL to the sensor. Furthermore, a MLA is placed
in distance B ahead of the sensor. Instead of placing the sensor
in front of the image plane, a focused plenoptic camera can
also be realized by placing the sensor behind the image plane
as described in [5]. Figure 2 shows a schematic cross view of
the interior of a Raytrix camera. The micro lenses of the MLA
focus the virtual main lens image, which would occur behind
the sensor, on the sensor. Thus, each micro lens forms a micro
image on the sensor. One distinct feature of Raytrix cameras is
that they have MLAs which consist of micro lenses with three
different focal lengths. Each type of micro lenses focuses a
different image distance bL on the sensor. Thus, the DOF of
the synthesized image is increased by a factor of three.

Within its DOF each micro lens can be considered as a
pinhole. Thus, each pixel of a micro image represents one

light ray (central ray of the corresponding micro lens). Since
the optical center of each micro lens is known, for each ray
additionally to the position coordinates (pixel position (xI , yI ))
two angle coordinates (αx and αy) can be calculated.

A. Image Synthesis

One feature of a plenoptic camera is, that after capturing
a light-field, images for different focus distances can be syn-
thesized. This is done by calculating the image which would
be formed on a sensor placed in a certain image distance bL
by the recorded light-field rays. To calculate the intensity of
a pixel in the synthesized image, at first all rays of the 4D
light-field which intersect the synthesized image plane at the
corresponding position are searched. Out of the intensities of
the selected rays a weighted average value is calculated. This
average value represents the intensity of the synthesized pixel.

Because of the low angular resolution of a focused plenop-
tic camera there will occur artifacts in the synthesized image
for regions which are not in focus on the selected image
plane. Nevertheless, it is also possible to focus each pixel on
a different image plane. Thus, if the image distance for each
pixel is known, a totally focused image can be synthesized.

For an image point with a long image distance bL (short
object distance aL) more rays are sampled than for an image
point with a short image distance because it occurs focused in
more micro images. Thus, in the synthesized totally focused
image close objects have less spatial resolution than objects
which are further away from the camera.

Here we will not go further into details of the image
synthesis. For a detailed mathematical description we refer to
[6].

B. Depth Estimation

It was already mentioned that if the image distance for each
virtual image point is known, a totally focused image can be
calculated. If a virtual image point is projected to at least two
micro images, its distance to the MLA b can be estimated
by triangulation of the corresponding rays. Thus, the depth
map needed to synthesize a totally focused image also can
be estimated from the recorded light-field function. Since the
distance between MLA and sensor B usually is not known,
a standardized value of the distance b, called virtual depth
v = b

B , is estimated. For further descriptions on the depth
estimation for plenoptic cameras we refer to the following
papers: [6], [14], [15].

III. IMAGE CALIBRATION METHOD

Section II presented the concept of a focused plenoptic
camera. Here it was shown that one can synthesize the image of
a traditional camera from the recorded light field of a focused
plenoptic camera.

In photogrammetry as well as in some fields of computer
vision it is important to have a precisely defined relation
between a pixel in the image and the corresponding point in the
object space. Since the synthesized image imitates the record-
ing of a traditional camera it is obvious to apply traditional
camera calibration methods to the synthesized image.



An approved method for calibration of traditional cameras
is the method described by Zhang [12]. In [12] the imaging
process of the camera is simplified by using a pinhole camera
model, like it is done in most of the common calibration
methods. For our experiments we define the following intrinsic
parameters for the pinhole camera model:

• fx - focal length of the pinhole camera in x-direction
(in pixels)

• fy - focal length of the pinhole camera in y-direction
(in pixels)

• (cx, cy) - image coordinates of the camera’s principal
point (in pixels)

By the definition of different focal lengths in x- and y-direction
we consider the case that the pixels on the image sensor are
not square but rectangular.

For the following definitions we use xI as notation for
an image point in Cartesian coordinates and x̃I for the
corresponding homogeneous coordinates. xC defines a three
dimensional (3D) point in camera coordinates and xW in world
coordinates.

xI = (xI yI)
T (2)

x̃I = (k · xI k · yI k)
T
= k ·

(
xTI 1

)T
(3)

xC = (xC yC zC)
T (4)

xW = (xW yW zW )
T (5)

Based on the intrinsic parameters, the intrinsic matrix M
can be defined, which describes the transformation from 3D
camera coordinates xC to image coordinates xI , as given in
eq. (6).

x̃I = M · xC =

(
fx 0 cx
0 fy cy
0 0 1

)
· xC (6)

Since real optical lenses are never perfect, they add distor-
tion to the projected image. In the presented calibration method
we use the distortion model presented by Brown [16], as it is
implemented in the OpenCV calibration method [17]. Eq. (7)
to (10) define the distortion model, where xI and yI are the
undistorted and x′I and y′I (x′I = (x′I y′I)

T ) the distorted
image coordinates in pixels. This distortion model considers
radial as well as tangential distortion.

x∗I =
xI − cx
fx

and y∗I =
yI − cy
fy

(7)

r =
√

(x∗I)
2 + (y∗I )

2 (8)

x′I =
[
x∗I ·

(
1 + k0 · r2 + k1 · r4 + k2 · r6

)
+

2 · p0 · x∗I · y∗I + p1 ·
(
r2 + 2 · (x∗I)2

)]
· fx + cx (9)

y′I =
[
y∗I ·

(
1 + k0 · r2 + k1 · r4 + k2 · r6

)
+

p0 ·
(
r2 + 2 · (y∗I )2

)
+ 2 · p1 · x∗I · y∗I

]
· fy + cy (10)

Radial distortion is a radial symmetric distortion component
with its origin in the principal point (cx, cy). Thus, it can be
defined by a function of the distance r to the principal point.
In Brown’s distortion model radial distortion is defined by a
polynomial of r, where the coefficients of odd exponents are

zero. The nonzero coefficients are k0, k1 and k2, as given in
eq. (9) and (10). Tangential distortion is a radial asymmetric
distortion which comes from decentralized lenses within the
lens system. Brown defines the tangential distortion by the
coefficients p0 and p1 as given in eq. (9) and (10).

The transform from world coordinates xW to camera
coordinates xC can be defined by a 3D rigid transform which
combines a 3D rotation and translation. The rigid transform is
defined in eq. (11), where R is the rotation matrix and t the
translation vector.

xC = (R t) ·
(
xW
1

)

=

(
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

)
·

xWyWzW
1

 (11)

The presented calibration method considers only planar ob-
jects. The world coordinate system for a recorded object is
defined such that the x-y-plane is equivalent to the plane of
the object. Thus, the z-component of the world coordinate
system is always zero (zW = 0) and the transfom becomes
independent of the third colum of R, as given in eq. (12).

xC =

(
r11 r12 tx
r21 r22 ty
r31 r32 tz

)
·

(
xW
yW
1

)
(12)

If we now combine eq. (6) and (12), the transform from a point
on the planar object to a point on the image plane is defined
as given in eq. (13).(

k · xI
k · yI
k

)
=

(
fx 0 cx
0 fy cy
0 0 1

)
·

(
r11 r12 tx
r21 r22 ty
r31 r32 tz

)
·

(
xW
yW
1

)

=

(
h11 h12 h13
h21 h22 h23
h31 h32 h33

)
·

(
xW
yW
1

)
(13)

After dividing eq. (13) by h33 eq. (14) results.(
k∗ · xI
k∗ · yI
k∗

)
=

(
h∗11 h∗12 h∗13
h∗21 h∗22 h∗23
h∗31 h∗32 1

)
·

(
xW
yW
1

)

= H ·

(
xW
yW
1

)
(14)

The planar homography between world and image coordinates,
as given in eq. (14), is defined by eight linear independent
coefficients h∗ij . For each perspective from which the planar
object is recorded the rotation matrix R and the translation
vector t change. Thus each perspective results in a new
transformation matrix H . The rotation matrix R is defined by
three independent angles (α, β and γ). Besides, the translation
vector t relies on three independent coefficients (tx, ty and tz).
Since the estimated planar homography, defined by H , gives
us eight linear independent conditions, the six coefficients of
the rigid transform between world and camera coordinates can
be calculated. Thus, for each perspective two conditions are
left to estimate the intrinsic parameters. The intrinsic matrix
mostly is defined by four independent coefficients as given in
eq. (6). Hence, the planar object has to be recorded from at



least two perspective to receive a unique solution. In reality
recordings from much more than two perspectives are taken
to average measurement errors.

After the estimation of the intrinsic and extrinsic parame-
ters the distortion coefficients are estimated. This is done based
on the calculated undistorted projection of an object point
xW to an image point xI , as defined in eq. (13), and the
corresponding recorded and distorted image point x′I . Thus,
the distortion coefficients (k0, k1, k2, p0 and p1) can be
estimated from eq. (7) to (10) by linear regression.

Based on the calculated undistorted points the intrinsic and
extrinsic coefficients are updated and the distortion coefficients
are calculated again. This procedure is repeated until consis-
tency is reached.

For a more detailed description on how the intrinsic,
extrinsic and distortion coefficients are estimated we refer to
[12] and [18].

IV. EXPERIMENTS

This section presents experiments which were performed to
evaluate the calibration method described in Section III when
applying it to a focused plenoptic camera. In the presented ex-
periments the OpenCV [17] implementation of the calibration
method was used. Here calibration points are recorded by using
a planar chessboard pattern. Each corner point between four
adjacent chessboard fields is detected in the recorded image.
Since for all those points the corresponding world coordinates
on the pattern are known, the points can be used for calibration.
For the experiment a pattern with 10× 7 fields was used.

In the presented experiments we used a Raytrix R5 camera
with the following two different lenses mounted to it:

1) 4mm–12mm zoom lens, set to 12mm focal length
2) 35mm fixed focal length

The main goal of the performed experiments was to distinguish
if the synthesized imaging of a focused plenoptic camera
can also be defined by a traditional camera model. Besides,
we wanted to evaluate how the two different lenses, with
different focal lengths and levels of distortion, are effecting
the calibration results.

For the experiments, for both lenses three measurement
series were recorded. In each series the chessboard pattern
was recorded from 50 as different as possible perspectives. To
each series the calibration method presented in Section III was
applied multiple times. For each calibration the camera model
was slightly changed as will be described in Section IV-A to
IV-D. The calibration method was performed to each of the
three measurement series to evaluate the consistency of the
results.

A. Complete Calibration Model

In the first experiment for both lenses the calibration was
performed using the complete calibration model with four
intrinsic and five distortion coefficients.

B. Constant Aspect Ration (fx = fy)

For the second experiment the aspect ration was set to
one (fx/fy = 1). Thus, during the calibration one intrinsic
parameter less has to be estimated. If this assumption conforms
the real camera model a more consistent result can be expected.

C. Constant Aspect Ration and Fixed Principal Point

One further assumption is made in the third experiment.
Beside the constant aspect ration the principal point of the
camera model is considered to be in the image center and is
set constantly to that point. This reduces again the number of
coefficients to be estimated. Furthermore, the principal point
certainly lies somewhere around the image center.

D. Constant Aspect Ration, Fixed Principal Point and Only
One Distortion Coefficient

The fourth experiment is only performed to the 35mm lens
since for the 12mm lens no improvement is expected. Here
the assumptions from the second and third experiment are still
considered to hold true. Besides, the distortion model is defined
by only the first radial distortion coefficient k0. All other
distortion coefficients are set to zero (k1 = k2 = p0 = p1 = 0).
This experiment is performed since the distortion for the
35mm lens seems to be very weak. Thus, by reducing again
the degrees of freedom the remaining coefficients should be
estimated more consistent if the assumption holds true.

V. RESULTS

In this section the results for the performed experiments are
presented. For evaluation at first some statistics are defined.

The root mean square (RMS) of the reprojection error σRep
gives a measure how good the estimated model represents the
measured values. The reprojection error e(i,j)Rep is the distance
between an object point x

(i)
W projected on the image plane,

based on the projection model, and the corresponding recorded
image point x′(i,j)I . Eq. (15) gives the definition of σRep.

σRep =

√√√√ 1

N ·M

N−1∑
i=0

M−1∑
j=0

(
e
(i,j)
Rep

)2
(15)

Here, e(i,j)Rep represents the reprojection error of the i-th chess-
board corner in the j-th image. N is the number of chessboard
corners and M the number of recorded images.

Besides, we define the root mean square error (RMSE) of
the estimated focal length σf and the principal point σc, as
given in eq. (16) and (17).

σf =

√√√√ 1

2 · S

S−1∑
i=0

(
f
(i)
x − fx

)2
+
(
f
(i)
y − fy

)2
(16)

σc =

√√√√ 1

S

S−1∑
i=0

(
c(i) − c

)
·
(
c(i) − c

)T
(17)

In eq. (16) and (17) S represents the number of measurement
series which were recorded (S = 3). Of course, from a series
of three no real statistics can be calculated. Nevertheless, based



TABLE I. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT A USING A 12mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 1058.8 1053.8 1048.1

fy [Pixel] 1064.3 1060.9 1053.9

cx [Pixel] 494.0 488.4 475.8

cy [Pixel] 496.9 528.4 502.4

TABLE II. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT B USING A 12mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 1065.9 1068.7 1059.7

fy [Pixel] 1065.9 1068.7 1059.7

cx [Pixel] 495.3 492.6 471.0

cy [Pixel] 494.2 525.6 500.7

TABLE III. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT C USING A 12mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 1064.1 1068.6 1058.8

fy [Pixel] 1064.1 1068.6 1058.8

cx [Pixel] 511.5 511.5 511.5

cy [Pixel] 511.5 511.5 511.5

TABLE IV. CALCULATED STATISTICS FOR THE 12mm FOCAL LENGTH

experiment no. 1 2 3
σRep [Pixel] 0.804 0.807 0.808

σf [Pixel] 4.333 3.758 4.032

σc [Pixel] 15.727 17.368 –

on σf and σc the quality of different calibration results can be
compared.

In the following two subsections the calibration results for
the 12mm and 35mm lens will be presented separately.

A. Calibration Results for fL = 12mm

Table I to III present the estimated intrinsic parameters
which resulted from the three experiments performed for the
12mm lens. Besides, Table IV shows the corresponding cal-
culated statistics. Since for the third experiment the principal
point was set to the image center prior to the calibration, σc
is not meaningful.

If we compare σRep, one can see that the models of all
three experiments conform quite well to the measured data.
For the model of the first experiment which uses all degrees
of freedom, the RMS of the reprojection errors of course is
minimum. This case uses the most complex model and thus,
the measured data can be adapted best.

Nevertheless, fixing the aspect ratio to fx/fy = 1 or setting
the principal point to a certain image coordinate improves the
estimation of the other parameters, at least as long as the
assumption conforms more or less to the real model.

For the third experiment σf is worse than for the second
experiment. This indicates, that the selected principal point
differs from the real one. By adjusting the principal point it
should be possible to achieve a more consistent estimation of
the focal length.

TABLE V. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT A USING A 35mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 3259.1 3261.6 3284.0

fy [Pixel] 3262.3 3261.0 3291.0

cx [Pixel] 520.7 430.0 426.4

cy [Pixel] 346.3 389.5 323.7

TABLE VI. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT B USING A 35mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 3262.1 3261.1 3285.0

fy [Pixel] 3262.1 3261.1 3285.0

cx [Pixel] 521.1 430.0 423.5

cy [Pixel] 347.0 389.4 327.0

TABLE VII. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT C USING A 35mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 3257.5 3247.8 3250.5

fy [Pixel] 3257.5 3247.8 3250.5

cx [Pixel] 511.5 511.5 511.5

cy [Pixel] 511.5 511.5 511.5

TABLE VIII. ESTIMATED INTRINSIC PARAMETERS FOR THE
EXPERIMENT D USING A 35mm FOCAL LENGTH

series no. 1 2 3
fx [Pixel] 3255.7 3252.7 3275.4

fy [Pixel] 3255.7 3252.7 3275.4

cx [Pixel] 511.5 511.5 511.5

cy [Pixel] 511.5 511.5 511.5

TABLE IX. CALCULATED STATISTICS FOR THE 35mm FOCAL LENGTH

experiment no. 1 2 3 4
σRep [Pixel] 0.336 0.336 0.352 0.358

σf [Pixel] 12.583 11.006 9.709 10.053

σc [Pixel] 51.461 51.609 – –

B. Calibration Results for fL = 35mm

Table V to VIII shows the intrinsic parameters which
were estimated for the 35mm lens and Table IX gives the
corresponding calculated statistics. For the 35mm lens the
same behavior as for the 12mm lens can be observed. Here,
the most consistent estimation of the focal length was achieved
when fixing the aspect ratio as well as the principal point. One
reason therefore could be that for this lens the principal point
conforms quite well to the image center. Another reason is that
for long focal lengths a shift of the principal point has not as
much effect as for short focal lengths. This can also be seen
when comparing σc for the 35mm and the 12mm lens. For
the 35mm lens σc is much higher than for the 12mm lens.
Besides, one can see that the results for experiment C and
D are almost the same. This means, for the 35mm lens the
distortion model can be reduced to only one parameter with
only a small rise of σRep and σf .

VI. CONCLUSION

In conclusion it can be said that traditional camera cali-
bration methods, like the method of Zhang [12] can be used



to calibrate the synthesized images of a plenoptic camera.
This can be seen by the small reprojection errors for all
experiments. Nevertheless, for a focal length of the main
lens which is long with respect to the image size (small
field of view (FOV)) Zhang’s calibration method seems to be
inappropriate. Especially for long focal lengths, the intrinsic
parameters are strongly correlated to the extrinsic orientation.
Thus, errors in the extrinsic orientation will also affect the
intrinsic parameters. One way to improve the calibration
would be to used a 3D calibration object instead of a planer
object. A 3D object brings more perspective distortion to the
recorded image. Thus, extrinsic and intrinsic parameters can
be separated more accurate. Another problem is that Zhang’s
method does not really minimize the squared error between
recorded and calculated image points like it is done for a
bundle adjustment. Instead is uses several optimization steps.
Here it could be investigated, how the errors of estimation are
propagated form one step to the next, to see how the error of
any parameter effects the reprojection error.

REFERENCES

[1] F. E. Ives, “Parallax stereogram and process of making same,” USA
Patent US725 567, 04 14, 1903.

[2] G. Lippmann, “Epreuves reversibles. photographies integrales,”
Comptes Rendus De l’Academie Des Sciences De Paris, vol. 146, pp.
446–451, 1908.

[3] E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic
camera,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 14, no. 2, pp. 99–106, February 1992.

[4] R. Ng, “Digital light field photography,” Ph.D. dissertation, Stanford
University, Stanford, USA, July 2006.

[5] A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in
IEEE International Conference on Computational Photography (ICCP),
San Francisco, CA, April 2009, pp. 1–8.

[6] C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended
depth-of-field,” in Human Vision and Electronic Imaging XVII,
Burlingame, California, USA, January 2012.

[7] K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina,
P. Chatterjee, R. Mullis, and S. Nayar, “Picam: An ultra-thin high
performance monolithic camera array,” ACM Transactions on Graphics
(TOG) - Proceedings of ACM SIGGRAPH Asia 2013, vol. 32, no. 6,
pp. 1–13, 11 2013.

[8] A. Lunsdaine and T. Georgiev, “Full resolution lightfield rendering,”
Adobe Systems, Inc., Tech. Rep., 2008.

[9] D. Dansereau, O. Pizarro, and S. Williams, “Decoding, calibration and
rectification for lenselet-based plenoptic cameras,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1027–
1034.

[10] O. Johannsen, C. Heinze, B. Goldlücke, and C. Perwaß, “On the
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