
A Real-Time Depth Estimation Approach
for a Focused Plenoptic Camera

Ross Vasko1(B), Niclas Zeller2,3, Franz Quint2, and Uwe Stilla3

1 The Ohio State University, Columbus, USA
vasko.38@osu.edu

2 Karlsruhe University of Applied Sciences, Karlsruhe, Germany
{niclas.zeller,franz.quint}@hs-karlsruhe.de

3 Technische Universität München, Munich, Germany
stilla@tum.de

Abstract. This paper presents an algorithm for real-time depth esti-
mation with a focused plenoptic camera. The described algorithm is
based on pixel-wise stereo-observations in the raw image recorded by
the plenoptic camera which are combined in a probabilistic depth map.
Additionally, we provide efficient methods for outlier removal based on a
Naive Bayes classifier as well as depth refinement using a bilateral filter.
We achieve a real-time performance for our algorithm by an optimized
parallel implementation.

1 Introduction

The plenoptic camera, first described more than a century ago [1,2], provides a
way for photographers to capture more information from a scene, compared to a
traditional camera, by placing a micro lens array (MLA) in front of the camera
sensor. The MLA allows for light-field information to be captured as a 4D func-
tion and the recorded image retains information about the structure of the scene
itself [3,4]. In a single image captured from a plenoptic camera, information is
recorded from several different viewpoints. By finding correspondences between
these view points, depths for objects in the scene are able to be estimated.

In contrast with binocular stereo systems, the plenoptic camera is able to
estimate depth information from a single image. This fact combined with the
small size of a plenoptic camera makes it suitable for a compact visual odometry
system which is able to measure metric scale.

In this paper, we present the adaptations made to parallelize a probabilis-
tic depth estimation algorithm [5] and a method of depth map refinement for
plenoptic cameras to allow for their use in real-time visual odometry systems.

1.1 Related Work

Due to the complexity of the light-field depth estimation problem, many dif-
ferent types of approaches to estimate a depth map are possible. Each of these
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approaches will be better suited towards different applications depending on
their run-times and accuracies.

Some methods seek a globally optimal solution and find a dense depth map
for the image such as [6,7].

Other approaches will calculate a sparse depth map using only local con-
straints by considering only the textured regions of the image such as [8,9].

In visual odometry and SLAM systems, we are specifically interested in hav-
ing depth map estimation algorithms with a low complexity to allow for real-time
systems. The algorithm presented in [5] uses a probabilistic approach to gener-
ate a sparse depth map from a single image captured by a plenoptic camera.
This algorithm’s low complexity makes it feasible to complete depth calcula-
tions in real-time and move closer to a real-time visual odometry system based
on a plenoptic camera. We aim towards a depth estimation algorithm that will
enable a visual odometry system for plenoptic cameras.

1.2 Outline of Work

In this paper we provide an approach for adapting an existing algorithm to be
able to perform in real-time. In Sect. 2 we briefly introduce the focused plentoptic
camera and in Sect. 3 we describe the already existing algorithm that we pro-
posed in previous work [5]. Section 4 continues on to describe the post-processing
of the depth map to increase its reliability in visual odometry systems. Section 5
details the adapation of this algorithm to allow it to run in real-time on a GPU.
Lastly, Sect. 6 shows the results of our depth estimation algorithm along with
the effects of the post-processing.

2 The Focused Plenoptic Camera

Rather than only capturing light intensities like a traditional camera, the plenop-
tic camera is able to record the direction of the light as well. The camera model
used in this research is a focused plenoptic camera constructed by Raytrix. A dia-
gram of this camera model is shown in Fig. 1. Additionally, the Raytrix camera
features micro lenses of three different focal lengths arranged in a hexagonal grid
to increase the depth of field. A subsection of an example raw image captured
from the Raytrix camera is shown in Fig. 2.

Figure 1 also shows how one is able to estimate the virtual depth for some
image point. Given a correspondence between pixels on the image sensor, the
distance b in Fig. 1 can be estimated by triangulation [12]:

b =
d · B

px
(1)

where d is the distance between the corresponding micro lens centers, B is the
constant, but not precisely known, distance between the image sensor and the
MLA, and px is the disparity between the corresponding pixels under different
micro lenses. A full derivation of this formula can be found in [5]. Note that
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Fig. 1. Diagram of the inside of a
focused plenoptic camera [10,11]. The
image sensor is positioned in front of
the virtual image, which is in the dis-
tance b behind the sensor.

Fig. 2. Section of a raw image that
was captured by a Raytrix camera. The
image shows the edge of a chessboard
with a portion of the background.

because we do not have a recorded value for B, we will calculate a virtual depth
[9], v, relative to B instead. Notice that as the disparity between pixels increases,
the virtual depth will decrease.

v =
b

B
=

d

px
(2)

3 A Probabilistic Virtual Depth Map Estimation
Algorithm

Once an image is captured from a plenoptic camera, we are able to seek a
correspondence between pixels in the raw image (Fig. 2) to estimate the virtual
depths for pixels in textured regions. We are able to complete this correspondence
quickly by only searching regions of the image that a match could possibly be
for a pixel. To address the sensor noise, we use a probabilistic approach and
calculate a variance for each depth estimate as well. This section is provided as
a brief overview for how the depth estimations are performed for each pixel to
allow for greater insight in later sections. A full description of this algorithm can
be found in [5].

The MLA of the Raytrix camera has the micro lenses arranged in a hexagonal
pattern. On the MLA, we define a graph of baselines from the center of one micro
lens to the center of all micro lenses to the right of it. The search for the matching
pixels is done across these baselines because it is guaranteed that corresponding
pixels will be on the same baseline. It is only necessary to search to the right
of a microlens because it is only required that a disparity between pixel pairs is
found once. Figure 3 shows the micro lens array along with several of the defined
baselines. Each baseline is defined by a vector ep where ‖ep‖ = 1 pixel and a
distance in pixels, d. Since the micro image can be considered to be rectified, ep
also defines the direction of the epipolar line for each pixel under the microlens.
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To begin the matching process for pixel xR = (xR, yR)T with intensity I(xR),
the baseline ep with the shortest distance that has not yet been considered for
the current pixel is chosen. It is then checked that the gradient of xR meets the
following condition, where TH is a predefined threshold.

|gI(xR)Tep| ≥ TH (3)

This is done to verify that xR has sufficient contrast in the direction of the
epipolar line. The search for a corresponding pixel is then performed along the
line

xs
R(px) = xs

R0 + px · ep (4)

where xs
R0 is defined by

xs
R0 = xR + d · ep (5)

The disparity that best matches two pixels is the px that minimizes the sum of
squared intensity error between two 5 × 1 pixel patches below

eISS(px) =
2∑

k=−2

[I(xR + kep) − I(xs
R(px) + kep)]

2 (6)

An inverse virtual depth, z(xR) is then calculated from the disparity that
minimizes eISS(px) for the current pixel. Additionally, a variance σ2

z can be
defined for the inverse virtual depth observation as given in [5]. We record
and work with the inverse virtual depths because they can be considered to be
Gaussian distributed [5]. We continue to advance and consider the next shortest
unprocessed baseline for the current pixel until none of the baselines at a single
distance were able to find pixel correspondences under a certain error thresh-
old. The multiple pixel correspondences are incorporated into a probabilistic
estimate, similar to the update step in a Kalman Filter.

If a correspondence was able to be found for pixel xR, we consider this pixel
to be valid and assign it an inverse virtual depth estimation based on all observed
disparities. If a correspondence was not found, the pixel is marked invalid. Once
the correspondence is attempted for each pixel, we project the raw inverse virtual
depth map to a 3D space [5].

4 Virtual Depth Map Post-processing

With the probabilistic approach, there is expected to be missing and incorrect
depth values in the virtual depth map once the algorithm completes. For this
depth map to be used later in visual odometry applications, it is necessary that
we fill in missing depth values in regions where we can confidently assign a depth
value as well as remove and smooth incorrect estimates in our depth map.
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Fig. 3. The hexagonal microlens grid of
the camera used with various baselines
that can be searched for matches.

Fig. 4. A heatmap of the time spent
on correspondence calculations for each
pixel. The lighter the pixel color is, the
longer is spent performing the corre-
spondence calculations.

4.1 Removing Noise and Estimating Missing Depth Values

Due to only searching in image regions with a high gradient, we receive a sparse
depth map with depth information only for the textured regions of the image.
But from noise and imperfections in the image, there are incorrect depth values
recorded for untextured regions as well as missing values in textured regions.
We seek to remove depth values in unreliable or unstable regions and fill in data
where we can confidently estimate a value.

First, we are able to remove depth pixels with a variance σ2
z that do not meet

a previously defined threshold,

σ2
z(xv) < T (z) = β · z(xv)3 (7)

This threshold removes inaccurate depth estimates with an unexpectedly high
variance for their virtual depth. A full explanation of this threshold can be found
in [5].

Additionally, depth values are filled in or removed based on how much depth
information is in some nearby region. If the depth calculations for a region were
indeed correct for a pixel, we expect that there are other pixels with valid depth
calculations in a nearby window. Due to the perspective projection, which is
performed by each of the micro lenses, objects with a high virtual depth occur
smaller in the micro images than objects with a low virtual depth. Additionally,
virtual image points with a high virtual depth are observed by more micro lenses,
as can be seen by Fig. 1. Consequently, regions with high virtual depths that are
projected back from the micro images consist of more points which are spread
over a larger region than regions that have small virtual depths.

Thus, we define the following relationship in Eq. (8), which defines the neigh-
borhood for a pixel,

m = c · vn (8)

where m is the width of a window around pixel p, vn is the average virtual depth
in some fixed neighborhood around p, and c is a fixed constant. Within this m×m
window, we expect to find other pixels with valid recorded depth values in a high
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density if p is indeed a valid depth estimation. Also, if p is the result of noise in
this image, the density of valid pixels in the m×m neighborhood should be low.

Once m is calculated, we measure the density of valid pixels with recorded
depth information and then a Naive Bayes classifier is used to make an estimate
on whether or not the pixel can be assumed to be a part of some textured region
with valid depth information:

P (Vk|ρ) ∝ P (Vk)P (ρ|Vk) (9)

where Vk is a label representing the validity of the current pixel and ρ represents
the density information of neighboring pixels. The most probable label for the
pixel’s validity is then selected given the density information in the m × m
window.

4.2 Depth Map Refinement

In the final depth map refinement step, we wish to smooth the depth estimates to
reduce noise. To accomplish this, we use a bilateral filter [13] to remove the noise
while preserving the edges. The filtered inverse virtual depth after an iteration
of the bilateral filter is defined by:

Zfiltered(x) =
∑

p∈Nx

wi(|Z(x) − Z(p)|)wd(|x − p|)wv(Vp)Z(p)∑
p∈Nx

wi(|Z(x) − Z(p)|)wd(|x − p|)wv(Vp)
(10)

where x and p are pixel coordinates, Nx is a window around x, Z(x) is an inverse
virtual depth, and V is a variance. The weighting functions were chosen to be
Geman-McClure functions. In general, wa(x) is defined to be:

wa(x) =
x2

x2 + σ2
a

(11)

where σ2
a is a predefined variance for each of the weighting functions. The weight-

ing functions are designed so that the inverse virtual depth value for each pixel
is only smoothed with other inverse virtual depth values that are reliable and
similar in depth, to prevent the smoothing of edges. The weighting functions
include wi for the inverse virtual depth difference, wd for the Euclidean distance
difference, and wv for the variance.

5 Implementation on a CUDA Device

As previously described, we attempt to find a correspondence between pixels in
neighboring micro images by searching through various baselines. For a single
pixel in the image, the correspondence search consists of several independent
operations along the baselines. These independent calculations are able to be
completed much more quickly with the use of parallelization. This algorithm
was adapted to run on a CUDA capable GPU so that instead of finding the
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correspondences for each pixel sequentially, threads work in parallel to find cor-
respondences for their assigned pixel.

To eliminate any communication between threads during the correspondence
search, a single thread completes all of the correspondence calculations required
for one pixel. The time to complete the correspondence calculations for a single
pixel depends both on the contrast in the pixel’s region as well as the virtual
depth of the pixel. If a pixel does not have much contrast in its region the cor-
respondence calculations will finish quickly, as correspondences will not be able
to be found due to a low gradient. Also, as the virtual depth of a pixel increases,
the correspondence calculations will take longer because the pixel will appear in
many micro images and many correspondences will have to be calculated, based
on the relationship shown in Fig. 1. Figure 4 shows a heatmap of the time taken
for the correspondence calculations for each pixel in a micro image. It can be
seen by Fig. 4 that it is possible for the correspondence calculations of pixels to
all take significantly different times.

The varying computation times will cause warp divergence, as each thread
in a warp will be spending different amounts of time on its correspondence
calculations. This could lead to a performance loss because the threads that were
able to finish their correspondence calculations will not be doing anything while
the remaining threads in the warp finish their computations. To address this, a
list of pixels to be processed is built and threads process the next available pixel
to minimize the effect of correspondence calculations taking different amounts
of time for different pixels. This allows for a single thread to move on to a new
pixel to process instead of being required to wait for all of the warp’s threads to
complete their correspondence calculations.

To gain a further decrease in run-time, it is possible to skip calculating the
correspondences for some of the pixels in the image. Skipping the correspondence
calculations for pixels in the image decreases the number of recorded depths in
the final depth map, but this decrease in density is able to be rectified by the
post-processing methods described.

To make the Naive Bayes classifier computations suitable for real-time and
interactive applications, a Summed Area Table (SAT) [14] is used to count the
number of valid pixels in the previously described m×m neighborhoods. Rather
than requiring a number of memory accesses dependent on m, an SAT allows
for these computations to be done in constant time, requiring only four memory
accesses for each neighborhood to be computed.

We find that the CUDA implementation allows this algorithm to be suitable
for real-time systems. Evaluations for the algorithm and the effects of skipping
pixels are given in the Sect. 6.

6 Results

In this section we present the performance of the parallel implementation of
our algorithm along with the effects of the post-processing by displaying the
results generated from test images. We wish to show that the modifications
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(a) (b) (c)

(d)
(e) (f)

Fig. 5. (a) shows the totally focused image of the chessboard, (b) shows the results
from the commercial software [9] with similar settings, (c) shows the original depth map
generated by our algorithm, (d) shows the depth map with pixel validities adjusted,
(e) shows a point cloud of the unfiltered depth information, (f) shows a point cloud of
the filtered depth data. The output depth map has a resolution of 1024× 1024.

made to this algorithm allow for it to be used with plenoptic cameras in real-time
visual odometry systems. All results were computed on a NVIDIA GeForce GTX
TITAN GPU. In the sample images, we compare our algorithm with software
from Raytrix [9]. The Raytrix software [9] has many parameters that affect the
results of the depth map. We chose the settings by finding parameters that
produced results with similar pixel densities. We have chosen to not include the
timings for the commercial software [9], because the timings were very sensitive
to changes in the settings. Nevertheless, we found our timings to always be
comparable or faster than the timings for the commercial software.

First, a walkthrough of the algorithm will be shown in detail for a sample
image of a chessboard and then the results from additional images will be shown.
Once the depth estimates above the previously discussed variance threshold are
removed, the validity of pixels are readjusted using the Naive Bayes classifier.
This resulting image is then refined using the bilateral filter. Results from this
process are displayed in Fig. 5. For this chessboard image, the depth estimation
takes 25 ms, the pixel validity adjustment takes approximately 3 ms, and the
filtering takes approximately 4 ms. A longer period of time can be spent on the
filtering to further smooth the image if required for the application. Additionally,
Fig. 6 displays several filtered depth maps generated along with the total time
taken to perform the depth estimations and then filter the image. In the displayed
images, the black pixels are in regions of weak texture and are marked invalid
with no recorded depth information.
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(a) Headphones (b) Raytrix (c) ours - 41 ms (d) ours - 48 ms

(e) Desk (f) Raytrix (g) ours - 18 ms (h) ours - 24 ms

Fig. 6. (a and e) show the totally focused intensity images, (b and f) show depth maps
from the commericial software, (c and g) show our original depth maps for the scene, (d
and h) show the final post-processed depth maps from our algorithm. The time under
the images is the total time taken to produce the depth map. Both output depth maps
have resolutions of 1024× 1024.

Watch ours - (0% skip) ours - (50% skip) ours - (75% skip)

Raytrix ours - 102 ms ours - 69 ms ours - 49 ms

Fig. 7. The effects of pixel skipping on the Watch image. Column 1 contains an image
of the original scene along with Rayrix’s depth map. Columns 2–4 contain original and
post-processed images from our algorithm with a percentage of pixels skipped and the
computation time. The output depth maps have resolutions of 2004× 1332.

The resulting depth maps for skipping pixels, as well as post-processing these
images, are shown in Fig. 7. It can be seen by this figure that by skipping pixels
we are able to save a significant amount of time in our depth map calculations.
Although the quality of the original depth map is decreased significantly, through
post-processing, we are able to restore the depth map.

It can be seen from the results that as the complexity of the scene increases,
the run-time of the algorithm also increases. The algorithm seeks pixel corre-
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spondences, so if many pixel matches are found, the algorithm will take longer.
Additionally, scenes with close objects take longer to calculate a depth map for
because points near the camera appear in many micro lenses and many corre-
spondences are calculated. But, the many parameters available in the algorithm
make it possible to decrease the computation time and keep reasonable results,
as needed for the application.

7 Conclusion

In this paper we described the modifications made to a previous algorithm to
make it suitable for use in a real-time visual odometry system as well as post-
processing methods to improve the image quality. We gave a method for removing
and adding depth estimations using a Naive Bayes classifier. Also, a refinement
method using a bilateral filter was described. We then detailed the process of
parallelizing and optimizing the existing algorithm.

Our results section shows that we are able to compute and post-process many
depth maps per second. The computation times can be decreased further through
the refinement of parameters, if it is found that an application does not require
as precise depth information. From our timings and results, we find that our
algorithm is suitable for real-time visual odometry systems.
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