
Feature Based RGB-D SLAM for a Plenoptic
Camera

Andreas Kühefuß, Niclas Zeller, Franz Quint
Karlsruhe University of Applied Sciences
Moltkestr. 30, 76133 Karlsruhe, Germany

andreas.kuehefuss, niclas.zeller, franz.quint@hs-
karlsruhe.de

Uwe Stilla
Technische Universität München

Arcisstr. 21, 80333 Munich, Germany
stilla@tum.de

Abstract—This paper presents a method to estimate the camera
poses for images of a plenoptic camera. For this, a feature
based RGB-D SLAM is used. A new method for matching the
features between two images will be presented. Finally the result
of the algorithm is compared with the trajectory from the Google
Project Tango.

Index Terms - RGB-D; SLAM; feature based; bundle ad-
justment; focused plenoptic camera

I. INTRODUCTION

With rising computing power SLAM (simultaneous local-
ization and mapping) algorithms will gain more and more
importance. In this paper a feature based RGB-D SLAM (red-
green-blue-distance SLAM) algorithm for a plenoptic camera
is presented. Plenoptic cameras are able to deliver (with a
certain accuracy) depth information from a single image,
which in turn allows the SLAM algorithm to generate a
scaled 3-D map and a scaled trajectory. In our approach the
SLAM works on RGB images and corresponding depth maps
generated with a Raytrix R5 plenoptic camera.

Several SLAM algorithms are known from literature. A.
Davison presented in [1] for example an Extended Kalman
filter (EKF) based monocular SLAM that is able to recover a
3D trajectory for a uncontrolled camera with a frame-rate of
30 Hz. A keyframe-based SLAM algorithm has been presented
by G. Klein in [2] to recover a 3D trajectory.

II. THE PLENOPTIC CAMERA

The model for a plenoptic camera described in [3] is used
in this paper. A plenoptic camera has, in contrast to a normal
pinhole camera, a micro lens array (MLA) between the main
lens and the image sensor. This leads to a point from object
space being projected, as shown in Fig. 1 not only to a single
image point but to several, which are located in different
micro images. By finding the points in the micro image which
correspond to the same object point, the so called virtual image
point can be calculated for each object. Each virtual image
point is characterized by an associated virtual depth which is
defined as the distance between the virtual image point and
the MLA in relation to the distance between the sensor and
MLA, cf. eq. (1). Please refer also to Fig. 1 for the definition
of the variables.

Fig. 1. Optical path inside a plenoptic camera. The MLA projects a single
object to different points on the sensor. [3]

v =
b

B
(1)

Substituting eq. (1) in the Fresnel-equation for pinhole
cameras, the object distance zC can be calculated from the
virtual depth

zC =

(
1

fL
−

1

B · v − bL0

)−1

. (2)

The object distance is used to project an image coordinate
xi into camera coordinate xC with

xC = zC · (KS ·K)
−1 · xi. (3)

The matrices KS and K are defined in [3] and contain the
intrinsic camera parameters, as shown in (4).

xC = zC ·

s−1
p 0 0 cx
0 s−1

p 0 cy
0 0 B−1 0
0 0 0 1

 ·

bL 0 0 0
0 bL 0 0
0 0 b 0
0 0 1 0

−1

·xi

(4)

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

25

The parameter bL is the distance of the virtual image to
the optical center of the main lens and is calculated using the
Fresnel equation for the main lens

bL =

(
1

fL
−

1

aL

)−1

. (5)

III. FEATURE ACQUISITION

This section describes which feature types are used and how
features are matched between images. First the raw images of
a plenoptic camera have to be converted into RGB and depth
map images. For this, the method presented in [4] is used.
After feature extraction, a matching between features in two
consecutive images is established.

A. Image acquisition

The scene is recorded with a plenoptic camera. After
recording, all raw images are converted to RGB and depth-
map images, which in our case have the size 1024 x 1024
pixels. To do this, we use the method presented in [4]. The
depth map contains for each pixel a virtual depth, which is
coded as a 16-bit grayscale value. Conversion to the virtual
depth v cf. eq. (1) is performed as suggested in [5] with

v =
1

1−
grayscale16−bit

65535

. (6)

This virtual depth is used together with the internal camera
parameters fL, B and bL0, which have been determined in a
previous calibration step, to calculate the object distance zC
with eq. (2). Finally, the camera coordinates of a point can be
calculated with eq. (3) out of the image coordinates.

Due to the small baseline between the micro images pro-
jected by the MLA, estimation of the virtual depth from
a single image of a plenoptic camera is possible within a
limited accuracy. Depth estimation can be improved using the
larger baseline between successive images of a video. For this,
corresponding points have to be matched. This is done with
a new method, which we call Slope Matching and which is
presented in the following.

B. Slope Matching

Interesting points in the images of the video sequence are
detected using the SURF feature detector [6]. After detecting
all SURF features in two consecutive images, a match for
each feature from the first image is searched in the second.
This is done by looking for nearest neighbour with the method
presented in [7] and considering the feature quality attributes
delivered by the SURF detector. The resulting matches for two
consecutive images are shown in Fig. 2.

Fig. 2. Resulting matches for two consecutive images, after next neighbor
search.

As one can see in Fig. 2 there are many wrong matches
which have to be removed. To remove the wrong matches, we
just stick the two images side by side and calculate the slope
of the line connecting the matched points (blue lines in Fig.
2) with

mi =
yi,2 − yi,1

(xi,2 + 1024)− xi,1
. (7)

After calculating the slope for each match, the median of
all slopes is computed. Each match will be marked as wrong
if it doesnt satisfy condition (8), where ε is a suitably chosen
threshold.

mmedian − ε ≤ mi ≤ mmedian + ε (8)

Since the rotation and the translation between two consecu-
tive images of a video is small, the slope for each match should
be within the limits given by ε. Inequation (8) removes all
matches with slopes that differ significantly from the median.

After this operation there still might remain wrong matches,
e.g. between a feature from the very left of the first image to
a feature of the very right in the second image, but having the
slope similar to the median. To remove these wrong matches,
the two pictures are stacked one above the other and the
previous step is repeated. Mathematically this is done by
calculating the inverse slope m

′

i of the matches

m
′

i =
xi,2 − xi,1

(yi,2 + 1024)− yi,1
. (9)

Again the median will be determined and a constraint
similar to the one presented in ineq. (8) removes all matches
with a wrong slope. The result of both slope filters is shown
in Fig. 3.

Fig. 3. Resulting matches for two consecutive images, after next neighbor
search and slope filters.

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

26

The resulting matches will be used for pose estimation
between two consecutive images.

Fig. 4. Feature chain between three images.

The baseline can be further extended, if matches are not
restricted to consecutive images. For this we use a feature
chain as shown in Fig. 4. If a feature is matched between the
first and the second and also between the second and the third
image, the feature from the first image is linked to the feature
from the third image. The yellow x in the third image shows
an feature that could not be matched. The feature chain is
broken for this feature.

IV. POSE ESTIMATION

Pose estimation is divided into two parts: First initial
poses are estimated between two consecutive images. After
estimating enough poses, a local bundle adjustment will be
performed.

A. Transformation Matrix

To estimate the pose for two consecutive images, the
transformation matrix has to be estimated. The transformation
matrix is defined by three rotations and three translations.
These six parameters form the camera vector a as shown in
eq. (10) and need to be estimated for every new image.

a =
(
α β γ tx ty tz

)T
(10)

B. Initial pose estimation

Instead of estimating the twelve (mutually dependent) ele-
ments of the transformation matrix in homogeneous coordi-
nates between the camera coordinate systems of two images,
we estimate directly the six elements of a with an iterative
procedure.

The first pose is estimated using the results of the slope
matching shown in Fig. 3. First the features are projected from
the image coordinate system in the camera coordinate system
using eq. (4). Now they can be transformed from the camera
coordinates corresponding to the first image in the camera
coordinates corresponding to the second image. This is done
by multiplying the coordinates with the transformation matrix
T as shown in (11).

x
′

C = T · xC (11)

The transformation matrix T is the one which is determined
by the vector a to be estimated. At the beginning of the
iterative process, the matrix is initialized with the identity
matrix.

The coordinates of the features from the first image in the
camera coordinate system of the second image can be back-
projected in the image coordinate system if the second image
by using the inverse of eq. (3), as shown in (12).

x
′

i =
1

zC
· (KS ·K) · x

′

C (12)

Note that the matrix Ks is the same for both images since
the camera remains unchanged. The matrix K however needs
to be adapted, since it depends on bL, which is a function
of the virtual depth (see eq. (5)). After transforming every
feature of the first image into the second image (initially with
the identity matrix), there will remain a reprojection error for
each match, expressed as the difference between the position
vector of a feature from the first image transformed to the
second image and its match in the second image (eq. (13)).
The position vectors are three-dimensional since they describe
points in the virtual image. The third dimension in the virtual
image is the virtual depth.

rj (a) = x
′

ij − xij =

x

′

ij

y
′

ij

v
′

ij

1

−

xij
yij
vij
1

 (13)

The goal is to find the camera vector a (and thus implicitly
the transformation matrix T) which minimizes the mean
reprojection error over all matches:

a
′
= min

a

n∑
j=1

||rj (a)|| (14)

To solve the minimization problem, the Gauss-Newton algo-
rithm is applied. To minimize the impact of outliers, Tukeys
biweight cost function is used [8]. This function suppresses
outliers by weighting them with zero, as shown in (15).

wTb =

(
1−

r2j
σ2

)2

|rj | ≤ σ

0 |rj | > σ

(15)

By weighting large outliers with zero, wrong matches will
not influence the estimation. For calculating the weight wTb,
the empirical standard deviation σ of the errors is used.

C. Bundle adjustment

To optimize the camera position for more than just two
images a local bundle adjustment [9] is performed. The bundle
adjustment is called local since is not carried out over all
images (frames) of the sequence, but only from a so called
key-frame to the next key-frame. A new key-frame is set,
if the number of matches in a feature chain (see Figure 4)
falls below a threshold. In our experiments we have set a new
key-frame when the number of matches has fallen below a
threshold. However, even if the number of matches exceeds the
threshold, every sixth frame is set as a key-frame to ensure that

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

27

the bundle adjustment is executed with a sufficient frequency
to prevent a drift.

The m images contained between the two key-frames partic-
ipate in the local bundle adjustment with their camera vectors
ak. Consider that for a total of n world points bj matches have
been found. The world points are given by their homogeneous
coordinate vector

bj =
(
xwj

ywj
zwj

1
)T
. (16)

The residual error of the world points, projected in the
corresponding frames depends of course on the camera vectors
ak as shown in eq. (17)

rjk (ak, bj) = x
′

ijk
(ak, bj)− xijk . (17)

The image coordinates used to calculate the error are
obtained by projecting the world points in the corresponding
frames using eq. (18), which is similar to eq. (12)

x
′

ijk
(ak, bj) = Tak

·
1

zwk

· (KS ·K) · bj . (18)

The task of the bundle adjustment is to find the parameters
which minimize the mean error over the n world points and
m camera positions with

{
a

′

k, b
′

j

}
= min

ak,bj

m∑
k=1

n∑
j=1

||rjk (ak, bj)|| . (19)

To minimize the effect of outliers, we use in this step also
Tukeys biweighted function (15).

V. EVALUATION

To evaluate the presented RGB-D SLAM algorithm, two
experiment setups have been made. The first is a set of 40
images with known ground truth and the second is a set of
1974 images where the trajectory is compared with the one
estimated by the Project Tango of Google. Example images
for both experiments are shown in Fig. 5 and Fig. 6.

Fig. 5. Image 20 / 40 of the first
experiment

Fig. 6. Image 800 / 1974 of the
second experiment

A. Comparison with ground truth

The first experiment contains a small number of 40 images
which have been recorded in a known grid. First, the camera
was moved 19 cm to the right in one cm steps. After that
the camera was moved 10 cm back, again in steps of 1 cm
each. At last, the camera was moved 19 cm back to the left,
in 2 cm steps. The last step amounted again to one cm. Thus
the camera was at the end of the movement 10 cm behind
its start position. The result of the RGB-D SLAM without a
bundle adjustment is shown in Fig. 7. The blue cones mark
the position and the orientation of the camera as estimated by
our SLAM algorithm without bundle adjustment. The white
cones show the ground truth.

Fig. 7. Result for the first experiment, without bundle adjusment. Blue cones
mark the estimated trajectory, the white ones the ground truth.

As one can see in Fig. 7 there is a big drift when not using
local bundle adjustment. The trajectory for the same images
with local bundle adjustment is shown in Fig. 8.

Fig. 8. Result for the first experiment, with bundle adjusment. Blue cones
mark the estimated trajectory, the white ones the ground truth.

As one can see in Fig. 8 the estimated trajectory fits well
to the known ground truth. The drift error is compensated by
the local bundle adjustment.

B. Comparison with Google Project Tango

The second experiment was done on a longer trajectory,
using 1974 images. To evaluate the result, the experiment was
recorded in parallel with the plenoptic camera and with a tablet

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

28

fixed to the plenoptic camera. On the tablet Google Project
Tango was running. The software of Project Tango estimates
a 3D trajectory using a accelerometer and a monocular camera
[10]. The trajectories resulting from our RGB-D SLAM and
from Project Tango are compared qualitatively. Of course the
result of Google Project Tango is not the actual ground truth,
but also subject to errors. However, it is a quite good estimate.

Fig. 9. Result for the second experiment. Red trajectory is from RGB-D
SLAM and the black one is from Google Project Tango. Scale is in mm.

Fig. 10. Result for the second experiment. Red trajectory is from RGB-D
SLAM with corrected scale and the black one is from Google Project Tango.
Scale is in mm.

The result of the second experiment is shown in Fig. 9. The
estimated trajectory matches qualitatively with the trajectory
from Google Project Tango, but as one can see there is a
scaling error in the data. For better comparison we estimated
the scale error using CloudCompare [11]. After correcting our
trajectory with the estimated scale, which amounted to 1.125,
the comparison can be performed easier. It is shown in Fig.
10.

As one can see in Fig. 10, the two trajectories fit quite
well. There is still a very small offset, observable in the top
left of the figure. To minimize also this offset a global bundle
adjustment could be performed.

VI. CONCLUSION

The presented method works quite well for typical videos
recorded with the plenoptic camera. The matching method
supplies good and enough matches for the trajectory estimation
to work stable, even for a long scene as shown in the second
experiment. Nevertheless there remain some unsolved prob-
lems like the scaling error shown in Figure 9. This error has
been corrected up to now only interactively and an automated
procedure has to be implemented. Furthermore would a global

bundle adjustment using the key-frames only help to achieve
higher stability against drift.

VII. ACKNOWLEDGMENT

This research was done in the Bachelor Thesis of Andreas
Kühefuß. It is part of the project Mosyko3D, which is funded
by the Baden-Wrttemberg-Stiftung in its program Photonics,
Microelectronics, Information Technology. We gratefully ac-
knowledge the support.

REFERENCES

[1] A. Davison, I. Reid, N. Molton and O. Stasse, ”MonoSLAM: Real-
Time Single Camera SLAM” IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 29, nr. 6, p. 1-16, 2007.

[2] G. Klein and D. Murray, ”Parallel Tracking and Mapping for Small AR
Workspaces”, Proc. International Symposium on Mixed and Augmented
Reality, ISMAR’07, Nara, 2007.

[3] N. Zeller, F. Quint and M. Stterlin, ”Investigating Mathematical Models
for Focused Plenoptic Cameras”, Proc. of International Symposium on
Electronics and Telecommunications ISETC2016, p. 285-288, Timisoara,
2016.

[4] N. Zeller, F. Quint, U. Stilla, ”Establishing a Probabilisitc Depth Map
from Focused Plenoptic Cameras”, Proc. International Conference on 3D
Vision (3DV), p. 91-99, Lyon, 2015.

[5] ”Converting Depth Data,” www.raytrix.de, Raytrix GmbH, 2013.
[6] H. Bay, T. Tuytelaars, L. Van Gool, ”SURF: Speeded Up Robust Fea-

tures”, Journal on Computer vision and image understanding, vol. 110,
nr. 3, p.346-359.

[7] M. Muja, D. Lowe, ”Fast Approximate Nearest Neighbors With Auto-
matic Algorithm Configuration”, International Conference on Computer
Vision Theory and Application VISSAPP’09, INSTICC Press, p. 331-
340, 2009.

[8] R. Maronna, D. Martin, V. Yohai: Robust statistics: Theory and methods,
Wiley Series in Probability and Statistics, Chichester: John Wiley & Sons,
2006.

[9] R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision.
Cambridge University press, 2004.

[10] ”Google Project Tango”, www.google.com/tango/, 2016.
[11] ”CloudCompare”, www.cloudcompare.org, 2016.

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

29

